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Car Insurance Variables

• A priori classification variables: age, gender, type and use of
car, country

• A posteriori variables: deductibles, credibility, bonus-malus

Bonus-Malus:

• Answer to heterogeneity of behavior of drivers

• Inducement to drive more carefully

• Strongly influenced by regulatory environment and culture



Are you a safe driver?

• Yes

• No



Who are safer drivers?

•Women

•Men



March 2011

Statistically, men drive more recklessly and cause more severe
accidents than women. Which is why men tend to pay more than
women to insure their cars.

European Court of Justice agreed: for all the damning evidence
of men behaving badly, gender can no longer play a part in how
much someone pays for insurance.

From ”E.U. Court to Insurers: Stop Making Men Pay More”, By Leo Cendrowicz, TIME, Mar. 02, 2011



December 2012

EU rules on gender-neutral pricing in insurance.

From 21 December 2012, insurance companies in the European
Union will have to charge the same price to men and women for
the same insurance products, without distinction on the grounds of
gender.



	  



Laurianne Krid, policy manager at FIA

”Women are safer drivers statistically, but they should pay
according to their real risk, which can be calculated objectively.”

”We want insurance to be based on criteria like type of vehicle, the
age of the driver, how much you drive during the year, and how
many accidents you have had.”

From ”E.U. Court to Insurers: Stop Making Men Pay More”, By Leo Cendrowicz, TIME, Mar. 02, 2011



Bonus-Malus System (BMS)

• Merit Rating System

• Fair Premium sharing

• No Claim Discount

Note: Bonus-Hunger Problem



Example - New Jersey BMS

New Jersey Merit-Rating 
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Example - Japan BMS

Japanese BMS
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Japan Bonus-Malus System

Japanese BMS

Class Premium Class after x claims

0 1 2 3 4 5

16 150 15 16 16 16 16 16

15 140 14 16 16 16 16 16

14 130 13 16 16 16 16 16

13 120 12 16 16 16 16 16

12 110 11 15 16 16 16 16

11 100 10 14 16 16 16 16

10 90 9 13 16 16 16 16

9 80 8 12 15 16 16 16

8 70 7 11 14 16 16 16

7 60 6 10 13 16 16 16

6 50 5 9 12 15 16 16

5 45 4 8 11 14 16 16

4 42 3 7 10 13 16 16

3 40 2 6 9 12 15 16

2 40 1 5 8 11 14 16

1 40 1 4 7 10 13 16



Example - Switzerland BMS
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A	Swiss	Bonus-Malus	system	with	premium	levels	as	percentages	to	the	base	premium	



Swiss Bonus-Malus System

Swiss Bonus-Malus Scale (Dufresne, 1988)
Premiums as a percentage of the base premium

x % x % x %

0 45 8 90 16 185
1 50 9 100 17 200
2 55 10 110 18 215
3 60 11 120 19 230
4 65 12 130 20 250
5 70 13 140 21 270
6 75 14 155
7 80 15 170



Lemaire (1995)

• optimal Bonus-Malus Systems (BMS) -assign to each
policyholder a premium based only on the number of his
accidents.

• same penalty for an accident of a small size or big size.

• optimality is obtained by minimizing the insurers risk.

NetPremium = E (Frequency)E (Severity)︸ ︷︷ ︸
constant



Example of number of claims N

On a third party liability insurance:

Number of claims Observed policies

0 96, 978
1 9, 240
2 704
3 43
4 9
5+ 0
Total 106, 974

Mean = 0.1011 and Variance = 0.1070



Poisson fit for number of claims N

P(N = n) =
e−λλn

n!

• E (N) = Var(N) = λ

• The non-contagion distribution: independent increments

• Stationary increments

• MLE and MM lead to the same estimator of λ, λ̂ = 0.1011



Same example with Poisson fit for number of claims N

On a third party liability insurance:

Number of claims Observed policies Poisson fit

0 96, 978 96, 689.6
1 9, 240 9, 773.5
2 704 493.9
3 43 16.6
4 9 0.4
5+ 0 0
Total 106, 974 106, 974



Mixed Poisson distributions

• Obviously Poisson is not the best fit!

• Need a distribution that exhibits positive contagion
(dependence)

• Still assume that each individual has claims according to a
Poisson(λ) process

• However, assume λ is a continuous random variable with
density g(λ),

P(N(t) = n) =

∫ ∞
0

P(N(t) = λ | λ)g(λ)dλ



Negative Binomial distribution N

For g(λ) we can select the Gamma(m, θ) distribution

g(λ) =
θmλm−1e−θλ

Γ(m)

Then N(t) follows a Negative Binomial (m, θ) distribution

P(N(t) = n) =
θmtn

(t + θ)n+m

Γ(n + m)

n!Γ(m)

with E (N(t)) = m
θ t and Var(N(t)) = m

θ t + m
θ2
t2 > E (N(t)



Modelling Negative Binomial Claim Frequency

Mixing Poisson with Gamma results in Negative Binomial

P(N = n) =

∫ ∞
0

e−λλn

n!
· λ

m−1θme−θλ

Γ(m)
dλ =

(
n + m − 1

n

)
θm
(

1

1 + θ

)m+n

.

Bayesian Approach - Posterior Distribution Gamma(K + m, t + θ)

µ(λ|k1, k2, . . . , kt) =
(θ + t)K+mλK+m−1e−(t+θ)λ

Γ(m + K)
, K =

t∑
i=1

ki

Best Estimate (quadratic loss function): posterior mean

E [Frequency ] = λt+1(k1, k2, . . . , kt) =
m + K

t + θ
.



Same example with NB fit for number of claims N

On a third party liability insurance:

Number of claims Observed policies Poisson fit NB fit

0 96, 978 96, 689.6 96, 985.5
1 9, 240 9, 773.5 9, 222.5
2 704 493.9 711.7
3 43 16.6 50.7
4 9 0.4 3.6
5+ 0 0 0
Total 106, 974 106, 974 106, 974

Note: MM to estimate m̂ = 1.6049 and θ̂ = 15.8778.



Average number of claims

• Apriori - Gamma(m, θ): λ̂ = m
θ

• Observe claim history: {k1, k2, . . . , kt}, k = k1 + · · ·+ kt

• Aposteiori - Gamma(m + k , θ + t): λ̂ = m+k
θ+t



Net Premium in Optimal BMS

NetPremium = E (Frequency)︸ ︷︷ ︸
=λ̂=m+k

θ+t

∗E (Severity)︸ ︷︷ ︸
=constant

Examples:

• Time 0: P1 = m
θ = 0.1011 Set as 100.

• Time 1:
• k1 = 0: P2 = m

θ+1 = 0.0951 Set 94.

• k1 = 1: P2 = m+1
θ+1 = 0.1543 Set 153.

• Time 2:
• k1 = 0, k2 = 0: P3 = m

θ+2 = 0.0898 Set 89.

• k1 = 1, k2 = 3: P3 = m+4
θ+2 = 0.3135 Set 310.



Net Premium in Optimal BMS

Optimal BMS with Negative Binomial model

Year Claims

0 1 2 3 4

0 100

1   94 153 211 269 329

2   89 144 199 255 310

3   84 137 189 241 294

4   80 130 179 229 279

5   76 123 171 218 266

6   73 118 163 208 253

7   69 113 156 199 242



Optimal BMS with NB

Advantages:

• FAIR - as a result of Bayes rule

• Financially balanced - the average income of the insurer
remains 100 every year

Disadvantages:

• high penalties

• encourages uninsured driving

• suggests hit and run behaviour

• induces the policyholder to change the company after one
accident.

Instead Markov chains are used in practice.



Japan Bonus-Malus System (Lemaire, 2017)

Japanese BMS

Class Premium Class after x claims

0 1 2 3 4 5

16 150 15 16 16 16 16 16

15 140 14 16 16 16 16 16

14 130 13 16 16 16 16 16

13 120 12 16 16 16 16 16

12 110 11 15 16 16 16 16

11 100 10 14 16 16 16 16

10 90 9 13 16 16 16 16

9 80 8 12 15 16 16 16

8 70 7 11 14 16 16 16

7 60 6 10 13 16 16 16

6 50 5 9 12 15 16 16

5 45 4 8 11 14 16 16

4 42 3 7 10 13 16 16

3 40 2 6 9 12 15 16

2 40 1 5 8 11 14 16

1 40 1 4 7 10 13 16



Japan BMS transition matrix

Japanese BMS transition matrix

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 1-p0 p0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1-p0 0 p0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 1-p0 0 0 p0 0 0 0 0 0 0 0 0 0 0 0 0

13 1-p0 0 0 0 p0 0 0 0 0 0 0 0 0 0 0 0

12 1-p0-p1 p1 0 0 0 p0 0 0 0 0 0 0 0 0 0 0

11 1-p0-p1 0 p1 0 0 0 p0 0 0 0 0 0 0 0 0 0

10 1-p0-p1 0 0 p1 0 0 0 p0 0 0 0 0 0 0 0 0

  9 1-p0-p1-p2 p2 0 0 p1 0 0 0 p0 0 0 0 0 0 0 0

  8 1-p0-p1-p2 0 p2 0 0 p1 0 0 0 P0 0 0 0 0 0 0

  7 1-p0-p1-p2 0 0 p2 0 0 p1 0 0 0 p0 0 0 0 0 0

  6 1-p0-p1-p2-p3 p3 0 0 p2 0 0 p1 0 0 0 p0 0 0 0 0

  5 1-p0-p1-p2-p3 0 p3 0 0 p2 0 0 P1 0 0 0 p0 0 0 0

  4 1-p0-p1-p2-p3 0 0 p3 0 0 p2 0 0 p1 0 0 0 p0 0 0

  3 1-p0-p1-p2-p3-p4 p4 0 0 p3 0 0 p2 0 0 p1 0 0 0 p0 0

  2 1-p0-p1-p2-p3-p4 0 p4 0 0 p3 0 0 P2 0 0 p1 0 0 0 p0

  1 1-p0-p1-p2-p3-p4 0 0 p4 0 0 p3 0 0 p2 0 0 p1 0 0 p0



Japan BMS 1 step transition matrix

Japanese BMS transition matrix

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 .0952 .9048 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 .0952 0 .9048 0 0 0 0 0 0 0 0 0 0 0 0 0

14 .0952 0 0 .9048 0 0 0 0 0 0 0 0 0 0 0 0

13 .0952 0 0 0 .9048 0 0 0 0 0 0 0 0 0 0 0

12 .0047 .0905 0 0 0 .9048 0 0 0 0 0 0 0 0 0 0

11 .0047 0 .0905 0 0 0 .9048 0 0 0 0 0 0 0 0 0

10 .0047 0 0 .0905 0 0 0 .9048 0 0 0 0 0 0 0 0

  9 .0002 .0045 0 0 .0905 0 0 .9048 0 0 0 0 0 0 0

  8 .0002 0 .0045 0 0 .0905 0 0 .9048 0 0 0 0 0 0

  7 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048 0 0 0 0 0

  6 0 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048 0 0 0 0

  5 0 0 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048 0 0 0

  4 0 0 0 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048 0 0

  3 0 0 0 0 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048 0

  2 0 0 0 0 0 .0002 0 0 .0045 0 0 .0905 0 0 0 .9048

  1 0 0 0 0 0 0 .0002 0 0 .0045 0 0 .0905 0 0 .9048



Japan BMS 4 steps transition matrix

Japanese four-step transition matrix

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 .0952 .0861 .0779 .0705 .6703 0 0 0 0 0 0 0 0 0 0 0

15 .0281 .1531 .0779 .0705 0 .6703 0 0 0 0 0 0 0 0 0 0

14 .0281 .0191 .2120 .0705 0 0 .6703 0 0 0 0 0 0 0 0 0

13 .0281 .0191 .0109 .2716 0 0 0 .6703 0 0 0 0 0 0 0 0

12 .0248 .0224 .0109 .0035 .2681 0 0 0 .6703 0 0 0 0 0 0 0

11 .0047 .0358 .0176 .0035 0 .2681 0 0 0 .6703 0 0 0 0 0 0

10 .0047 .0023 .0410 .0135 0 0 .2681 0 0 0 .6703 0 0 0 0 0

  9 .0046 .0024 .0008 .0403 .0134 0 0 .2681 0 0 0 .6703 0 0 0 0

  8 .0025 .0042 .0010 .0001 .0402 .0134 0 0 .2681 0 0 0 .6703 0 0 0

  7 .0005 .0029 .0041 .0004 0 .0402 .0134 0 0 .2681 0 0 0 .6703 0 0

  6 .0005 .0002 .0027 .0040 .0004 0 .0402 .0134 0 0 .2681 0 0 0 .6703 0

  5 .0004 .0003 0 .0027 .0040 .0004 0 .0402 .0134 0 0 .2681 0 0 0 .6703

  4 .0001 .0004 .0002 0 .0027 .0040 .0004 0 .0402 .0134 0 0 .2681 0 0 .6703

  3 0 0 .0004 .0002 0 .0027 .0041 .0003 0 .0436 .0101 0 .0670 .2011 0 .6703

  2 0 0 0 .0004 .0002 0 .0035 .0035 .0002 .0101 .0369 .0067 .0670 .0670 .1341 .6703

  1 0 0 0 .0002 .0004 .0001 .0015 .0035 .0102 .0102 .0168 .0235 .0704 .0670 .0670 .



Japan BMS 16 steps transition matrix

Japanese 16-step transition matrix

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 .0071 .0108 .0115 .0128 .0508 .0328 .0265 .0272 .1594 .0465 .0362 .0348 .2709 .0259 .0235 .2231

15 .0043 .0112 .0137 .0131 .0104 .0635 .0360 .0274 .0140 .1827 .0452 .0348 .0287 .2682 .0235 .2231

14 .0043 .0044 .0164 .0169 .0108 .0085 .0791 .0390 .0143 .0131 .2058 .0439 .0287 .0259 .2657 .2231

13 .0042 .0045 .0041 .0231 .0164 .0090 .0073 .0970 .0280 .0133 .0119 .2287 .0377 .0259 .0235 .4654

12 .0032 .0052 .0043 .0035 .0275 .0169 .0078 .0057 .1032 .0292 .0121 .0106 .2467 .0350 .0235 .4654

11 .0015 .0048 .0060 .0039 .0029 .0313 .0174 .0064 .0047 .1117 .0280 .0108 .0529 .2198 .0326 .4654

10 .0015 .0014 .0063 .0065 .0034 .0024 .0348 .0173 .0054 .0107 .1129 .0267 .0531 .0502 .1931 .4745

  9 .0014 .0015 .0012 .0074 .0069 .0030 .0029 .0365 .0173 .0115 .0144 .1091 .0689 .0504 .0477 .6199

  8 .0009 .0017 .0014 .0011 .0084 .0072 .0037 .0039 .0372 .0235 .0150 .0179 .1463 .0641 .049 .6199

  7 .0005 .0013 .0019 .0014 .0012 .0090 .0082 .0047 .0054 .0437 .0260 .0185 .0744 .1242 .0595 .6201

  6 .0005 .0005 .0016 .0022 .0016 .0016 .0103 .0092 .0061 .0148 .0448 .0282 .0750 .0692 .1047 .6297

  5 .0004 .0005 .0005 .0019 .0026 .0020 .0032 .0115 .0103 .0154 .0202 .0443 .0830 .0697 .0644 .6701

  4 .0003 .0005 .0006 .0008 .0023 .0029 .0036 .0051 .0125 .0191 .0207 .0248 .0964 .0755 .0647 .6701

  3 .0002 .0004 .0007 .0009 .0013 .0028 .0044 .0054 .0074 .0210 .0234 .0252 .0841 .0837 .0686 .6704

  2 .0002 .0003 .0006 .0010 .0014 .0020 .0044 .0061 .0076 .0176 .0249 .0269 .0843 .0769 .0730 .6728

  1 .0002 .0003 .0005 .0009 .0014 .0020 .0039 .0061 .0079 .0177 .0232 .0276 .0852 .0770 .0702 .6757



Japan BMS 128 steps transition matrix

Japanese 128-step transition matrix

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

16 .0003 .0005 .0007 .0011 .0017 .0025 .0045 .0066 .0088 .0188 .0240 .0281 .0860 .0778 .0703 .6683

15 .0003 .0005 .0007 .0011 .0017 .0025 .0045 .0066 .0088 .0188 .0240 .0281 .0859 .0778 .0704 .6684

14 .0003 .0005 .0007 .0011 .0017 .0025 .0045 .0066 .0088 .0188 .0240 .0281 .0859 .0777 .0704 .6685

13 .0003 .0005 .0007 .0011 .0017 .0025 .0045 .0066 .0088 .0188 .0240 .0281 .0859 .0777 .0703 .6686

12 .0003 .0005 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0188 .0240 .0281 .0859 .0777 .0703 .6686

11 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0188 .0240 .0281 .0859 .0777 .0703 .6686

10 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6687

  9 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6687

  8 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6687

  7 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6687

  6 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688

  5 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688

  4 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688

  3 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688

  2 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688

  1 .0003 .0004 .0007 .0011 .0017 .0025 .0045 .0065 .0088 .0187 .0240 .0281 .0859 .0777 .0703 .6688



Discussion-Japan

• More than 81% of policyholders end up in classes 1, 2 or 3
and pay the minimum premium

• Less than .5% of policiholders end up in the malus zone.
Why? Penalties are not severe enough.

• Income of insurer keeps decreasing

”The variability of premiums measure the degree of solidarity
implied by the BMS”



Correct pricing of a safe driver

Advocate taking severity of claims into account in a BMS

• majority of optimal Bonus-Malus Systems (BMS) -assign to
each policyholder a premium based on the number of his
accidents only.

• same penalty for an accident of a small size or big size.

• optimal BMS designed are based both on the number of
accidents of each policyholder and on the size of loss
(severity) for each accident incurred.

• optimality is obtained by minimizing the insurers risk.



Literature Review

• Categorisation of Claim Severities (Discrete)
• Picard(1976): Large and Small
• Lemaire(1995): Property Damage and Bodily Injuries
• Pitrebois et al., (2006): Four types, Dirichlet Distribution

• Distributions of Claim Severities (Continuous)
• Frangos and Vrontos (2001): Pareto distribtution
• Valdez and Frees (2005): Burr XII long-tailed distribution
• Ni, Constantinescu, Pantelous (2014): Weibul distribution
• Ni, Li, Constantinescu, Pantelous (2014): Weibul and Pareto

distribution



Choice of distributions for claims severity

Tail behaviours of three comparative distributions [Boland 2007]

Exponential : P(X > x) = exp(−θx);

Weibull : P(X > x) = exp(−θxγ);

Pareto : P(X > x) =

(
θ

θ + x

)s

.



Modelling Pareto Claim Severity

Mixing exponential with Inv.Gamma(m,s) results in Pareto(s,m)

F (x) =

∫ ∞
0

(1− e−θx)
e−mθ(θm)s+1

mΓ(s)
dθ = 1−

(
m

m + x

)s

Bayesian Approach - Posterior Distribution

π(θ| x1, x2, . . . , xK︸ ︷︷ ︸
claims′history

) =
[
∏K

i=1 f (xi |θ)]π(θ)∫∞
0

[
∏K

i=1 f (xi |θ)]π(θ)dθ

=
e−θ(m+M)(θ(m + M))K+s+1

(m + M)Γ(K + s)

∼ Inv .Gamma(s + K ,m + M), M =
K∑

k=1

xk



Premium Calculation

Mean Claim Severity

E [Severity ] =
m + M

s + K − 1
, M =

K∑
k=1

xk

The Net Premium

Premium =
θ + K

t + τ︸ ︷︷ ︸
E(frequency)

m + M

s + K − 1︸ ︷︷ ︸
E(severity)



Modelling Weibull Claim Severity

Mixing exponential with a Levy distribution

F (x) =

∫ ∞
0

(1− e−θx)
c

2
√
πθ3

exp

(
− c2

4θ

)
dθ = 1− exp

(
−c
√
x
)
.

Bayesian Approach

Posterior Distribution

π(θ|x1, x2, . . . , xK ) =
[
∏K

i=1 f (xi |θ)]π(θ)∫∞
0

[
∏K

i=1 f (xi |θ)]π(θ)dθ

=
θK−

2
3 exp

(
−
(
Mθ + c2

4θ

))
∫∞
0
θK−

2
3 exp

(
−
(
Mθ + c2

4θ

))
dθ
.



Using the modified Bessel Function

Bayesian Approach contd.

=

(
c

2
√
M

)−(K− 1
2 )
θK−

2
3 exp

(
−
(
Mθ + c2

4θ

))
∫∞
0

(
2
√
Mθ
c

)K− 3
2
exp

(
− c
√
M

2

(
2
√
Mθ
c

+ c

2
√
Mθ

))
d
(

2
√
Mθ
c

) . (1)

• The modified Bessel Function [Abramowitz and Stegun 1964]

Bv (x) =

∫ ∞
0

e−x cosh t cosh(vt)dt.

• An alternative expression

Bv (x) =
1

2

∫ ∞
0

exp

(
−1

2
x

(
y +

1

y

))
y v−1dy , x > 0.



Posterior Distribution

Posterior Distribution: Generalised Inverse Gaussian (GIG)

π(θ) =

(
α′

β′

) v
2
θv−1exp

(
− 1

2

(
α′θ + β′

θ

))
2Bv

(√
α′β′

) .

where α′ = 2M, β′ = c2

2
, v = K − 1

2
.

Best Estimate in the sense of using a quadratic loss funtion: posterior mean

E [GIG ] =

√
β′

α′
Bv+1

(√
α′β′

)
Bv

(√
α′β′

) .

Mean Claim Severity

E [Severity ] =
1

θt+1(x1, x2, . . . , xK )
=

2
√
M

c

BK− 1
2
(c
√
M)

BK+ 1
2
(c
√
M)

. (2)



Net Premium

NetPremium =


α+K
t+τ ·

(
2
√
M
c

B
K− 1

2
(c
√
M)

B
K+1

2
(c
√
M)

)
: M > 0(

α
t+τ

) (
2
c2

)
: M = 0



Numerical Illustration

• Data source: [Klugman et
al., 1998]

• Sample Size: 250



Fitting the Distributions (Maximum Likelihood
Estimation)

• Estimates of parameters in
the Pareto distribution:
m ≈ 2000; s ≈ 1.34;

• Estimates of the parameter
in the Weibull distribution:
c ≈ 0.02



QQ Plots



Analysis of the behaviour

• The Weibull model offers
cheaper premium rates;

• Up to a certain number of
claims, the Weibull premium
starts to slightly decrease;

• Bonus-Hunger issue.



Discussions

• The Weibul model is offering lower prices;

• The Weibull model is more applicable on the scenario where
many small claims are filed;

• Weibull choice explained since reinsurance exists in practice to
handle large claims;

• We might discourage the hunger for bonus phenomenon.



Mixed Strategy

• Weibull estimates better for small-sized claims.

• A mixture of the previous two models is suggested. With q
denoting the probability that a claim cost exceeds a certain
threshold z , we have

Premium = Ep[Xwei ]Ep[Nwei ](1− q) + Ep[Xpar ]Ep[Npar ]q.

i.e., X ∼ Xwei when X ≤ z and X ∼ Xpar when X > z . Note
that q and z can both be observed from a sample and Ep

stands for the posterior mean.



Frequency Distribution

• Suppose the total claim frequency is Negative Binomial
distributed, i.e., N ∼ NB(α, τ). Then the number of claims
above the limiting amount z also follows a Negative Binomial
distribution, and Npar ∼ NB(α, τq).

• Similarly, Nwei ∼ NB(α, τ(1− q)).

• Apriori means of claim frequency (Pareto and Weibull claims)

E [Npar ] =
α

τq
,

E [Nwei ] =
α

τ(1− q)
.

• Bayesian posterior means

Ep[Npar ] =
α + qK

τq + t
,

Ep[Nwei ] =
α + (1− q)K

τ(1− q) + t
.



The Net Premium Formula

The Mixture Net Premium =

α + K (1− q)

τ(1− q) + t
·2
√
M1

c

BK(1−q)− 1
2
(c
√
M1)

BK(1−q)+ 1
2
(c
√
M1)

(1−q)+
α + Kq

τq + t
· m + M2

s + Kq − 1
q

• Kq or K (1− q) are not necessarily integers.



Challenges of the future

Personalized premium based on telematics =driver behavior
(examples)
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