

Artificial Intelligence and its Utilization in Insurance Operations

Frank Cuypers

- 2016
 - Solvency II initiates
- **2020**
 - New players flood the market with % digital+alternatives to insurance
- **2025**
 - Insurance industry flood the market with % ickle Superannuations+with little Solvency II capital requirements
- **2030**
 - 30% of the insurance players file for bankruptcy
 - The weaknesses of the Solvency II standard formula become obvious
 - Who should have known? Who should have warned?
- **2035**
 - The actuarial profession is discredited
 - The last Presidents of the SAA, DAV and IFO are burnt at the stake

Whom Shall we Still Need in 2035?

- Drivers?
- Nurses?
- õ
- Translators?
- Lawyers?
- Physicians?
- Psychiatrists?
- Actuaries?
- Õ
- Programmers?
- Õ

How Shall we Live in 2035?

- Will our children still learn how to read & write?
- Shall we be terminated?
- Shall we become bionically enhanced?

 Will eventually joint human & machine crowd intelligence supersede artificial intelligence?

- k-nearest neighbours
- Support vector machines
- Bayesian networks
- Genetic algorithms
- Õ

Ubiquitous Neural Networks

- OCR
- Higgs search
- Spam filters
- Image compression
- Travelling salesman problems
- Medical diagnosis
- Voice recognition & generation
- Translation <u>translate.google.com</u>
- Natural languages processing

infocodex.com

- Gaming
- Face recognition <u>how-dude.me</u> <u>how-old.net</u>
- Õ
- Insurance?

Applications – Supervised Learning

Regression

- Output = e.g. size of claim
- Each output neuron gives a number, which can take any value

Classification

- Output = e.g. type of claim
- Each output neuron gives a probability, which all add up to 100%

13

0,5

1,0

🎒 Sing	e Choice (Reduce list in the field 'All wi	ith') - Micros	soft Internet Explorer p
Se	earch	ок	Help
All	with	ок	
Result of thematic search: 561 documents (by relevance) Click on no. => direct view			
	Documentname/Date/Priority dat	ie Wrd/Ra%	Document title/Descriptors/Assignees
1	/usr/Ints/US5842148.xml	2641	Method Of Evaluating And Classifying Living Structures For Estimating Poten
	3.04.05 / 7.10.96 0 hits	87 %	earthquake, windstorm, actuarial / Ass: Jcp Geologists, Inc.
2	/usr/I./JP23345991A2.xml	160	Earthquake Derivative System And Its Method
	3.04.05 / 23.05.02 0 hits	86 %	earthquake, electromagnetic, earthquake insurance / Ass: Nec Engineering Ltd
3	/usr/I./JP11175623A2.xml	114	Earthquake Damage Evaluation System And Recording Medium
	3.04.05 / 11.12.97 O hits	85 %	earthquake, active fault, topographical / Ass: Tokio Marine &Amp Fire Insurance Co I
4	/usr/I./JP11295453A2.xml	93	Watch With Identity-Storing Function
	3.04.05 / 9.04.98 0 hits	85 %	earthquake, display panel, blood group / Ass: Shimamura Hideko
5	/usr/Is/EP1347399A1.xml	3844	Travel Insurance Reception Apparatus And Method
	3.04.05 / 19.03.02 O hits	84 %	travel insurance, itinerary, output program / Ass: Kabushikikaisha Equos Research,Ai
6	/usr/IS2003182165A1.xml	4204	Travel Insurance Reception Apparatus And Method
	3.04.05 / 19.03.02 O hits	84 %	travel insurance, itinerary, expressway / Ass: Kato Atsushi,Kawamoto Kiyoshi,Kimura I
Z	/usr/I/JP22092513A2.xml	167	Lease Management System
	3.04.05 / 1.09.00 O hits	84 %	fire insurance, building loan, rental / Ass: Zuerich Insurance Co,Jiyatsukusu:kk,Sokei:-
8	/usr/IS2004128170A1.xml	1696	Method For Intergrating Insurance Quotation, Payment And Issuance To Mort
	3.04.05 / 19.12.02 O hits	84 %	flood, escrow company, flood insurance / Ass: Mackethan Edwin Robeson,Ellsworth J:
9	/usr/Is/JP6195358A2.xml	156	Device For Issuing Fire Insurance Form By Utilizing Computer
	3.04.05 / 25.12.92 O hits	84 %	fire insurance, information storage, memory area / Ass: Toraberu Data:kk
10	/usr/Is/JP6168256A2.xml	181	Travel Insurance Contract Issuing Device Utilizing Computer
	3.04.05 / 30.11.92 O hits	84 %	control command, travel insurance, reservation / Ass: Toraberu Data:kk
11	/usr/I/JP23108768A2.xml	138	Insurance Contract Processor, Insurance Contract Processing Method And P
	3.04.05 / 26.09.01 0 hits	84 %	travel insurance, processing method, insurance contract / Ass: Mitsui Sumitomo Insur
12	/usr/Is/JP5012048A2.xml	102	Processing System For Taking Over Inter Multiple Sub-System Processing
	3.04.05 / 2.07.91 0 hits	84 %	atomicity, taking over, first information / Ass: Fujitsu Ltd
<u>13</u>	/usr/l/JP22183440A2.xml	179	Mutual Aid Premium Management Method In Fire Insurance Service
	3.04.05 / 11.12.00 0 hits	84 %	fire insurance, premium, convenience store / Ass: Kurata Takeshi
<u>14</u>	/usr/IS2002147613A1.xml	2800	Methods Of Marketing Summary Maps Depicting The Location Of Real Proper
3.04.05 / 11.12.00 0 hits 84 % fire insurance, premium, convenience store / Ass: Kurata Takeshi			

 <u>Neural network for classifying</u> <u>speech and textural data based</u> <u>on agglomerates in a taxonomy</u> <u>table</u>

 System and method for automated establishment of experience ratings and/or risk reserves

Ubiquitous Neural Networks

- OCR
- Higgs search
- Spam filters
- Image compression
- Travelling salesman problems
- Medical diagnosis
- Voice recognition & generation
- Translation <u>translate.google.com</u>
- Natural languages processing

infocodex.com

- Gaming
- Face recognition <u>how-dude.me</u> <u>how-old.net</u>
- Õ
- Insurance?

Ubiquitous Neural Networks

19

- Insurance?
 - Actuarial engineering
 - " Individual claims development
 - " Pricing
 - Alternative to replicating portfolios
 - ~õ
 - Claims
 - " Regulation of attritional claims
 - ["] Fraud detection
 - Ő
 - Underwriting & customer relations
 - " Lapse prediction & retention programs
 - Medical underwriting
 - " Behavioural advice (telematics, health, õ)
 - Ő
- Alternative insurance
 - ???

■ Aggregate all claims of a given AY into a single aggregate loss ⊗

- Aggregate all claims of a given AY into a single aggregate loss ⊗
- Develop with
 - Chain Ladder
 - Born-Ferg
 - Cape Cod
 - Õ
- Assume
 - Homogenous portfolio
 - Independent AY

- Aggregate all claims of a given AY into a single aggregate loss S
- Use individual claims information ③

24

- Aggregate all claims of a given AY into a single aggregate loss S
- Use individual claims information ③ cascading DY neural network

Individual Claims Development Aggregate all claims of a given AY into a single aggregate loss 🙁 Use individual claims information ③ cascading DY neural network õ 25

ASTIN Working Party on ICDML

- Didactic implementation
 - 2 types of synthetic claims
 - Excel
 - Cascading DY
 - 1 hidden layer
 - 8 neurons
 - Paids only

© Controlled environment

Controlled environment

ASTIN Working Party on ICDML

ASTIN Working Party on ICDML

- Diplactic prototype
 2-types of synthetic claims
 Excel
 - Gescading DY
 - 1 hiader layer
 - 8 neurons
 - Paids only

- Experimental implementation
 - Several types of synthetic claims
 - R, Python,õ
 - Cascading DY & AY
 - 1. 2 hidden layers
 - 2. many neurons
 - Paids & outstandings
- Productive roll out
 - Real data
 - R or Python or SAS
 - Cascading DY or AY
 - ? hidden layers
 - ? neurons
 - Paids & ovstandings
 - Oher explanatory variables

Aggregate Loss Development

- Develop with
 - Chain Ladder
 - Born-Ferg
 - Õ
- Aggregates all claims of a given AY into a single aggregate loss
- Overside works either on paid or incurred losses
- 崎 Assumes
 - Homogeneous portfolio
 - Independent AY

Individual Claims Development

- Develop with
 - DY or AY cascades
 - Convolutional networks
 - Õ
- Considers all individual claimsq features, including non monetary inputs
- Considers simultaneously payments and reserves
- Works with
 - Heterogeneous portfolios
 - Dependent AY

- Architecture
- Data pre-processing
- Training
- Communication

Challenges: Architecture

- Monkey & octopus
 - Can solve similar problems
 - Have completely different brains (octopus has 9 brainsõ)
- Dyslexic & autistic humans
 - Have same brain architectures
 - Have completely different skills
- Neural network
 - ? Activation function (sigmoid)
 - ? Penalty function
 - ? Number of layers
 - ? Number of neurons
 - ? Training strategy

- Somethy. A noir Ellane Trouge, Uvert O delge : Vayelles, Je Dirai queque jour vos naissances latentes : A, noir corter sele Des monches cilatantes qui bombinent autour Des pranteurs cruelle 8, Gelfes Donobre JE, fitter Des vapeurs et des tentes Hahres des glaciers fiers, rois blanes, fitons donkelles; I, pourpres, sang cracké, nire des livres belles Dans le coline de les drietes prinstentes; U, cycles vibrements divinir des mens vouides gue l'alchime imprimerary grand fronts stating; O Suprême Claires plier des students étranges Silunes traverse des mondes et des Canges : - O l'Omige, rayon Violet De Ver Yeury I. A. Plinet
- ? Fully-connected vs convolutional network
- ? õ
Challenges: Data Pre-Processing

- Humans are good at catching flying objects
 - But less if they are myopic
- Humans are good at communicating orally
 - But less if they are hearing-impaired
- Neural network
 - ! Pre-process inputs
 - ! Scale outputs

requires a healthy understanding of the underlying phenomena

- How do you learn
 - A poem
 - A foreign language
 - A programming language
 - A mathematical method
 - Õ
- Neural network
 - Minimize penalty function over a high dimensional parameter space
 - Backpropagation
 - © Very fast (Python, Matlab)
 - $\ensuremath{\mathfrak{S}}$ Steepest gradient \Rightarrow local minima
 - Simulated annealing?
 - © Global minimum?
 - ⊗ Untested?

Challenges: Communication

- You ride a car. do you know how
 - your ABS works?
 - your airbag triggers?
 - it will drive on its own?
- You implement Chain Ladder. do you understand why
 - the link factors take these values?
 - you may apply this method?
- Richard Feynman:
 - Nobody understands Quantum Mechanics!
- Produce with neural networks . illustrate with decision trees

- Respond very fast
 õ but training can take long
- Can generalize
 õ and may get it wrong
- Are robust
 õ most of them
- Are very flexible with regard to inputs õ if well pre-processed
- Can update their knowledge continuously

Ubiquitous Neural Networks

41

- Insurance?
 - Actuarial engineering
 - " Individual claims development
 - " Pricing
 - Alternative to replicating portfolios
 - ~õ
 - Claims
 - " Regulation of attritional claims
 - ["] Fraud detection
 - Ő
 - Underwriting & customer relations
 - " Lapse prediction & retention programs
 - Medical underwriting
 - " Behavioural advice (telematics, health, õ)
 - Ő
- Alternative insurance
 - ???

... et Carthago delenda est!

Statutory reserving

Different models depending on

- data availability / quality
- line of business / market
- processes / products
- Õ
- actuarial judgment

1st moment of a distribution

standard reserving model

Solvency II

Different models depending on

- data availability / quality
- line of business / market
- processes / products
- Õ
- actuarial judgment

nth moment of a distribution

Internal models

Internal model

Frank Cuypers

+41 (41) 725 32 94

frank.cuypers@prs-zug.com

Synthetic vs Real Data

- Synthetic data
 - Training: ignore known DY
 - Validation: use these DY

- Real data
 - Training: use all known DY
 - Validation: cross-validate w/in AY

Claims Generator

ultimate

Generate individual claims with probability distributions of

 $() = \cdot ()$

() = () + ()

 $() = \cdot ()$

- Severity:
- Development patterns: age-to-ultimate ()~ (,)
- ~ (,) e ()~ (

- Components
 - Paid
 - Outstanding
 - Incurred
- Patterns
 - (): = [1 -]
 - (): = (--)
- Dependence
 - Frank Copula () ⋈ () for each

Generate as many individual claims as needed

Mix individuals claims from different models

